
Download free eBooks at bookboon.com

Semantic Web and Ontology

66

Protégé

6 Protégé

Objective:

Protégé is the most famous tool in the Semantic Web community to build ontologies. his chapter will

discuss in detail, the method to create an ontology using Protégé, and the ways to explore the concept

of classes and individuals in the ontology.

6.1 Introduction to Protégé

Protege is an open-source tool developed at Stanford Medical Informatics. It has a community of

thousands of users. Although the development of Protege has historically been mainly driven by

biomedical applications, the system is domain-independent and has been successfully used for many

other application areas as well. Like most other modeling tools, the architecture of Protege is cleanly

separated into a ‘model’ part and a ‘view’ part. Protege’s model is the internal representation mechanism

for ontologies and knowledge bases. Protege’s view components provide a user interface to display and

manipulate the underlying model. he protege’s model is based on a simple, yet lexible metamodel,

which is comparable to object-oriented and frame-based systems. Basically, it can represent ontologies

consisting of classes, properties (slots), property characteristics (facets and constraints), and instances.

Protege provides an open Java API to query and manipulate models. An important strength of Protege

is that the Protege metamodel itself is a Protege ontology, with classes that represent classes, properties,

and so on. For example, the default class in the Protege base system is called STANDARD-CLASS,

and has properties such as :NAME and :DIRECT-SUPERCLASSES. his structure of the metamodel

enables easy extension and adaption to other representations. For example, this metamodel is extended

to handle UML and OWL. Using the views of Protege’s user interface, ontology designers basically

create classes, assign properties to the classes, and then restrict the properties’ facets at certain classes.

Using the resulting ontologies, Protege is able to automatically generate user interfaces that support

the creation of individuals (instances). For each class in the ontology, the system creates one form with

editing components (widgets) for each property of the class.

For example, for properties that can take single string values, the system would, by default, provide a

text ield widget. he generated forms can be further customized with Protege’s form editor, where users

can select alternative user interface widgets for their project. In addition to the predeined library of user

interface widgets, Protege has a lexible architecture that enables programmers to develop custom-tailored

widgets, which can then be plugged into the core system. Another type of plugin supports full-size user

interface panels (tabs) that can contain arbitrary other components.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Semantic Web and Ontology

67

Protégé

In addition to the collection of standard tabs for editing classes, properties, forms, and instances, a library

of other tabs exists that perform queries, access data repositories, visualize ontologies graphically, and

manage ontology versions. Protégé currently can be used to load, edit and save ontologies in various

formats, including CLIPS, RDF, XML, UML and relational databases. Recently, support for OWL was

added. Since ontologies played an important role in Semantic Web applications, it was straightforward to

take an existing ontology development environment as a starting point. Extensions to Protege can beneit

from the generic services provided by the core platform, such as an event mechanism, undo capabilities,

and a plugin mechanism. By basing the OWL Plugin on top of Protege, we could also reuse Protege’s

client-server-based multi-user mode that allows multiple people to edit the same ontology at the same

time. Protege also provides a highly scalable database back-end, allowing users to create ontologies with

hundreds of thousands of classes.

http://bookboon.com/
http://bookboon.com/count/advert/7a02d4d2-9105-46a9-9453-a37800b93d7c

Download free eBooks at bookboon.com

Semantic Web and Ontology

68

Protégé

Also, there is already a considerable library of plugins which can be either directly used in OWL or

adapted to OWL with little efort. Furthermore, the fact that Protege is open-source also encourages plugin

development. Last but not least, Protege is backed by a large community of active users and developers,

and the feedback from this community proved to be invaluable for the development of the OWL Plugin.

Our decision to base the OWL Plugin on Protege also had some risks. In order to be able to reuse as

much of the existing Protege features as possible, we had to create a careful mapping between the Protege

metamodel and OWL that maintains the traditional Protege semantics where possible. Furthermore,

none of the generic Protege widgets and tabs is optimized for OWL, and not all of the editing metaphors

for frame based systems are appropriate for OWL. In particular, OWL’s rich description logics features

such as logical class deinitions required special attention. he following sections will show how we have

addressed these issues.

6.1.1 How to develop Ontology?

Developing ontology in theoretic terms is already discussed in the previous chapter. he following steps

will help to develop ontology practically:-

1. Deine classes in the ontology

2. Arrange the classes in a subclass-superclass hierarchy

3. Deine slots and describe allowed values for these slots

4. Fill-in the values of slots for instances

6.2 Files in Protégé:

When you use Protégé to create and edit ontologies you will generate at least two iles:

• Project ile

A project ile has an extension of .pprj. he project ile stores information related to any interface

customizations or editor options you have selected. In many cases, you don’t have to send this

ile to colleagues with your ontology unless you have been customizing forms with the Forms

Tab. Project iles created with older versions of Protégé-OWL (especially prior to version 3.0)

may not be compatible with your current version, in such case you may have to build a new

project from the scratch.

• Source ile

A source ile has an extension of .owl, .rdfs, or .rdf. his ile is where your ontology classes,

individuals and properties are deined. here may be several source iles depending on how

the ontology has been deined. If it is modular and has been created properly, Protégé-OWL

will ind and load all of the appropriate source iles.

http://bookboon.com/

Download free eBooks at bookboon.com

Semantic Web and Ontology

69

Protégé

• Classes

Ontology classes are very similar to classes in an object oriented program. Just like object

oriented programming, classes in ontologies also form an hierarchy. You can view this hierarchy

in the right-hand side panel, labeled as Asserted class hierarchy. he root class which is at the

top of the inheritance hierarchy is hing (this is true of all OWL ontologies).

6.2.1 How are Ontology Classes diferent from Object-oriented Classes?

While they are similar in many ways, one important diference to remember is that, an individual of

ontology can belong to zero or more classes, in addition to any inherited class. here are ways to limit the

classes an individual of one class can belong to but if such explicit information is absent then individuals

can be members of, as few or as many classes as the ontology creator wants them to be.

• Equivalent classes

his section describes other classes or groups that are equivalent to the selected class.

• Superclasses

Superclasses are the parent class/classes of the selected class (since you can have multiple classes

you can also have multiple superclasses).

• Members

Members represent individuals which are members of a particular class. hey can be added

explicitly, or inferred later through reasoning.

• Disjoint classes

hey allow you to explicitly select the classes that members of the selected class cannot belong

to. Most of the time, you do not have to explicitly mark classes as disjoint but it can be helpful

if you are using some external reasoning or application to make the class deinitions as explicit

and exact.

Browse through the classes provided and try to get a feel of the concepts they are trying to

describe. Ater you are done looking at the classes go to the top menu and select Reasoner ->

Fact++. his will turn on the reasoner to infer additional facts about the classes.

• Object and Data properties

While attaching properties to classes, it makes sense to immediately provide statements about

the domain and range of these properties. here is a methodological tension here between

generality and speciicity. It is useful to deine the domain and range as narrowly as possible,

so that it will be easy to detect potential inconsistencies and misconceptions in the ontology

by spotting domain and range violations.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Semantic Web and Ontology

70

Protégé

• OWL properties represent relationships between two objects.

here are two main properties:

1. Object properties link object to object.

2. Data-type properties link object to XML Schema datatype or rdf:literal

Some other important properties are:

Annotation properties

his property can be used to add annotation information to classes, individuals, and properties.

Inverse properties:

1. Every object property may has a corresponding inverse property.

2. If some property links individual A to individual B, then its inverse property will link

individual B to individual A.

http://bookboon.com/
http://bookboon.com/count/advert/7df08111-c180-4bd8-97db-a2d500e6043a

Download free eBooks at bookboon.com

Semantic Web and Ontology

71

Protégé

Functional properties:

1. If a property is functional for a given individual, then only one individual can be related via

this property.

2. Functional properties are also known as single valued properties.

Inverse functional properties:

If a property is inverse functional, then its inverse property is functional.

Transitive properties:

If a property P is transitive, and the property relates individual A to individual B, and also individual B

to individual C, then we can infer that individual A is related to individual C via property P.

Symmetric properties:

If a property P is symmetric, and the property relates individual A to individual B, then individual B is

also related to individual A via property P.

6.2.3 Some important terms

Cardinality:

Cardinality must be speciied for as many properties as possible in order to indicate whether they are

allowed or required to have a certain number of diferent values or not. Oten, occurring cases are ‘at

least one value’ (i.e., required properties) and ‘at most one value’ (i.e., single-valued properties).

Required values:

Oten, classes are deined by virtue of a certain property having particular values, and such required

values can be speciied in OWL, using owl:hasValue. Sometimes, the requirements are less stringent,

for instance-

A property may have some values from a given class (and not necessarily a speciic value,

owl:someValuesFrom).

Relational characteristics:

It is concerned with the relational characteristics of properties, i.e., symmetry, transitivity, inverse

properties, functional values.

Property domain and ranges

Properties link individuals from the domain to individuals from the range. OWL uses domain and range

as axioms in reasoning.

http://bookboon.com/

Download free eBooks at bookboon.com

Semantic Web and Ontology

72

Protégé

Property restrictions:

In OWL, properties are used to create restrictions. Restrictions are used to restrict the individuals that

belong to a class.

here are ive restrictions:

• Quantiier restrictions

• Existential quantiier

• Universal quantiier

• Cardinality restrictions

• hasValue restrictions

6.3 Instances

We use ontologies to organize sets of instances and there is a separate step to ill the ontologies with

instances. Typically, the number of instances is larger than the number of classes in the ontology.

Ontologies vary in size from a few hundred classes to tens of thousands of classes; the number of

instances varies from hundreds to hundreds of thousands, or even larger. Because of these large numbers,

populating ontology with instances is typically not done manually. Oten, instances are retrieved from

legacy data sources such as databases. Another, oten used technique is the automated extraction of

instances from a text corpus.

6.3.1 Creating a sample project

Note:

There are two main ways of modeling ontologies:

• Frame-based

• OWL

Each has its own user interface.

1. Protege Frame editor: It enables users to build and populate ontologies that are frame-based, in accordance

with OKBC (Open Knowledge Base Connectivity Protocol). It consists of –

 ¾ Classes

 ¾ Slots for properties and relationships

 ¾ Instances of class

2. Protege OWL editor:

It enables users to build ontologies for the Semantic Web. It consists of-

 ¾ Classes

 ¾ Properties

 ¾ Instances

 ¾ reasoning

Tool used: Protégé

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Semantic Web and Ontology

73

Protégé

Step 1:

1. Start protégé

2. Go to File

3. Choose New

4. Enter the Ontology URI (http://www.bookboon.com/ontologies/bookstore.owl)

5. hen choose RDF/XML

6. Choose Properties View

A new, empty Protégé-project has been created. Save it in your local ile as bookstore.owl. Refer the

following screenshots for better understanding:

“The perfect start

of a successful,

international career.”

CLICK HERE
to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be

www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://bookboon.com/
http://bookboon.com/count/advert/5e8cd819-4ddd-4941-a6bb-a16900eac393

Download free eBooks at bookboon.com

Semantic Web and Ontology

74

Protégé

Screenshot 6.1: Create Ontology Wizard

Screenshot 6.2: Create Ontology Wizard – Specifying the location to store the .owl ile

http://bookboon.com/

Download free eBooks at bookboon.com

Semantic Web and Ontology

75

Protégé

Screenshot 6.3: Protégé interface

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Semantic Web and Ontology

76

Protégé

Step 2:

Go to Classes tab. You will ind that the empty class tree contains one class called owl:hing, which is

the superclass of everything.

Screenshot 6.4: Protégé-classes tab

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education

 ▶ visit www.ligsuniversity.com to

 ind out more!

is currently enrolling in the

Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Semantic Web and Ontology

77

Protégé

Create subclasses:

Sub-classes to be constructed are- Books, BookType and BookAuthor. hey are subclasses of owl:hing.

hough there is no special naming convention, it’s important that we maintain consistency. Refer to the

part highlighted in the below screenshot, to know the icon used to create a sub-class.

Screenshot 6.5: Creating sub-class

Screenshot 6.6: Sub-classes

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Semantic Web and Ontology

78

Protégé

Step 3:

To specify that Book, BookType and BookAuthor are disjoint classes. Add both the sub-classes to the

disjoint class panel by selecting them. Refer to the below screenshot.

Screenshot 6.7: Disjoint classes

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Semantic Web and Ontology

79

Protégé

Step 4:

Create sub-classes for BookType and BookAuthor.

For example,

BookType = (Romance, hriller)

BookAuthor = (Shakespeare, Sidney Sheldon)

Follow the wizard to create these disjoint classes.

Screenshot 6.8 : Creating sub-classes

http://bookboon.com/

Download free eBooks at bookboon.com

Semantic Web and Ontology

80

Protégé

Step 5:

• Go to the Object properties tab.

• Click on “create Object properties”.

• Create an Object property “hasBelonger”.

Screenshot 6.8: Creating Object Properties

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Semantic Web and Ontology

81

Protégé

Step 6:

Now, select the “hasBelonger” property and add sub-properties to it. Let’s create sub-properties

“hasWriter” and “hasPublisher”.

Screenshot 6.9: Creating sub-properties.

www.mastersopenday.nl

Visit us and ind out why we are the best!

Master’s Open Day: 22 February 2014

Join the best at

the Maastricht University

School of Business and

Economics!

Top master’s programmes

•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;

Financial Times Global Masters in Management ranking 2012

Maastricht

University is

the best specialist

university in the

Netherlands

(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Semantic Web and Ontology

82

Protégé

Step 7:

Create inverse properties.

• Create a new object property called isBelongerOf.

• Press the “Set inverse property” button.

• Select “hasBelonger”.

• he inverse relation has been set up.

• Select hasPublisher

• Create the isPublisherOf as the inverse property of hasPublisher.

• Hence, isPublisherOf is the subproperty of isBelongerOf.

• Select hasWriter

• Create isWriterOf as the inverse property.

• Hence, isWriterOf is the subproperty of isBelongerOf.

Screenshot 6.10: Creating inverse properties.

http://bookboon.com/

Download free eBooks at bookboon.com

Semantic Web and Ontology

83

Protégé

Screenshot 6.11: Adding inverse properties.

Screenshot 6.12: After completely adding inverse properties.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Semantic Web and Ontology

84

Protégé

Step 8:

Create a transitive property.

• Select the “hasBelonger” property.

• Choose/Tick the transitive tick box.

• Select the “isBelongerOf ” property, make sure that the transitive tick box is ticked.

Screenshot 6.13: Creating transitive properties.

 -
 ©

 P
h
o
to

n
o
n
s
to

p

> Apply now

REDEFINE YOUR FUTURE

AXA GLOBAL GRADUATE
PROGRAM 2015

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Semantic Web and Ontology

85

Protégé

Step 9:

Create functional properties.

• Select the “hasPublisher” property

• Tick the “functional” tick box

• OWL-DL does not allow datatype properties to be transitive, symmetric or have inverse

properties.

Screenshot 6.14: Creating functional properties.

http://bookboon.com/

Download free eBooks at bookboon.com

Semantic Web and Ontology

86

Protégé

Step 10:

Specify the ranges.

• Select hasPublisher.

• Press the range button.

• Select BookType.

• Press OK button.

• BookType must be displayed in the range list.

• When multiple classes are added to the range, they represent the union of all classes.

• Select the isPublisherOf property.

• Set the domain of the isPublisherOf property to BookType.

• Set the range of the isPublisherOf property to Book.

• he above steps will now be repeated for hasWriter.

• Select the hasWriter property.

• Specify the range as BookAuthor.

• Select the isWriterOf property.

• Specify the range as Book.

Screenshot 6.15: Specifying the ranges for hasPublisher.

http://bookboon.com/

Download free eBooks at bookboon.com

Semantic Web and Ontology

87

Protégé

Screenshot 6.16: Specifying range for hasWriter.

Screenshot 6.17: Specifying the range for isPublisherOf.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Semantic Web and Ontology

88

Protégé

Screenshot 6.18: Specifying the range for isWriterOf.

http://bookboon.com/
http://bookboon.com/count/advert/09268424-498c-48c4-a852-a25700ed3ed3

Download free eBooks at bookboon.com

Semantic Web and Ontology

89

Protégé

Step 11:

Specify the domain

• Select hasPublisher property.

• Press add domain button.

• Select Book.

• Press OK.

• Book is displayed in the domain list.

• When multiple classes are added as domain, they represent the union of these classes.

• Set the domain of the isPublisherOf property to BookType.

• Select the hasWriter property.

• Specify the domain as Book.

• Select the isWriterOf property.

• Specify the domain as BookAuthor.

Screenshot 6.19: Specifying the domain.

Step 12:

Invoke the reasoner.

Ontology described in OWL-DL can be processed by a reasoner. Go to owl —>preference, to make sure

that OWL-DL is selected. he main service ofered by a reasoner is to test whether or not one class is

a subclass of another class. By performing such tests on all of the classes, it is possible for a reasoner to

compute the inferred ontology class hierarchy.

http://bookboon.com/

Download free eBooks at bookboon.com

Semantic Web and Ontology

90

Protégé

Another reasoning service is consistency checking, i.e., to check whether or not it is possible for the

class to have any instances. A class is deemed to be inconsistent if it cannot possibly have any instances.

Screenshot 6.20: Starting a reasoner.

Screenshot 6.21: Inconsistencies identiied by Reasoner.

Once identiied the inconsistencies are removed appropriately to ensure consistency.

http://bookboon.com/

